import yfinance as yfyticker = yf.Ticker("MSFT")df = yticker.history(period="3y") # max, 3mo, etc# print(df.columns)# ['Open', 'High', 'Low', 'Close', 'Volume', 'Dividends', 'Stock Splits'print(df)''' Open High ... Dividends Stock SplitsDate ... 2017-10-31 80.666197 80.666197 ... 0.0 02017-11-01 80.015972 80.092470 ... 0.0 02017-11-02 79.700420 80.761818 ... 0.0 02017-11-03 80.398455 80.838313 ... 0.0 02017-11-06 80.513203 80.991310 ... 0.0 0... ... ... ... ... ...2020-10-26 213.850006 216.339996 ... 0.0 02020-10-27 211.589996 214.669998 ... 0.0 02020-10-28 207.669998 208.839996 ... 0.0 02020-10-29 204.070007 207.360001 ... 0.0 02020-10-30 203.500000 204.289993 ... 0.0 0'''for index, row in df.iterrows(): # 2017-10-31 00:00:00 80.6661972680961 80.6661972680961 79.47093001044333 79.5378646850586 27086600.0 print(index, row['Open'], row['High'], row['Low'], row['Close'], row['Volume'])
NOTE: Plot yfinance Historical Candle Chart With mplfinance
❤️ Is this article helpful?
Buy me a coffee ☕ or support my work via PayPal to keep this space 🖖 and ad-free.
Do send some 💖 to @d_luaz or share this article.
✨ By Desmond Lua
A dream boy who enjoys making apps, travelling and making youtube videos. Follow me on @d_luaz
👶 Apps I built
Travelopy - discover travel places in Malaysia, Singapore, Taiwan, Japan.